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THE ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS OF DIFFERENTIAL
EQUATIONS CONTAINING LARGE AND RAPIDLY
CHANGING COEFFICIENTS

M. Vishik and L. Lyusternik

ABSTRACT. The asymptotic behavior of the solutions of
differential equations with large and rapidly varying coef-
Ticients is investigated for the case of simple second-order
equations. The methods can be generalized directly to cover
a wide class of higher order equations.

Various problems in mathematical physics make it necessary for us to deal
with equations whose coefficients (including those contained in the right side)
or their derivatives become large. These include, for example, problems with
"potential wells" or "barriers” in gquantum mechanics, problems on the propaga-
tion of electromagnetic waves through the boundary of a region with high con-
ductivity (M. A. Leontovich conditions (ref. 1), problems with infinitely large
right sides in infinitely narrow bands of the simple-or double-layer type.
Such problems, in the first approximation, are reduced to certain boundary
value problems with boundary conditions or with "junction" conditions on sur-
faces where the coefficients increase rapidly or are discontinuous. In such
problems the investigation of the asymptotic nature of the solution near the
specified boundary is basically quite localized. Usually, in this case, the
variation in solutions in the direction transverse to the boundary takes place
more rapidly than in the tangential direction. Therefore, in constructing the
asymptotic solution it is important that we correctly isolate the principal
"transverse" part of the operator in a simpler form than that of the operator
as a whole. Methods of this type have been applied in problems where higher
derivatives have small coefficients (refs. 2 and 3) and in problems with
oscillating boundary conditions (refs. 4 and 5). For the sake of brevity and
clarity we shall illustrate the asymptotic methods by using simple examples of
second order equations; these can be reduced directly to a wide class of higher-
order equations.

2. Problems with large coefficients in a constant subdomain.

Problem 1. Let us assume that I” is a smooth plane curve which boinds the
domain Q. Let us consider the eguation

Lotte=Au; — ke (%, y) e = h (%, 9), | (1)

where ke(x,y)=c(x,y)20 inside Q and ke(x,y)zcl(x,y)lez,cl;a2>0 outside Q;

h( %, y)=0 outside Q. We seek the asymptotic expansion of the solutions of equa-
tion (1) under conditions that u, and Bue/an are continuous on I' and that U,
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becomes equal to zero at infinity. We introduce the following coordinates
near I': p- the distance (with a sign) along the normal to I',¢- the coordinate
of the base of the normal on I'. By expressing the operator Le in terms of these

coordinates, by changing the variable such that t=p/e (see (7)), and by expand-
ing the coefficients of the equation in powers of p=te, we obtain, outside Q,
(when p>0)

L, = [Lou.+ellu+ =0, (2)
where . : A
L.,u_—a—l,——ﬂ’(cp)u : (3)
A\
As the first approximation of the solution for equation (2) we take the solu- {2#8
tion Uq of the boundary layer type equation Louo 0; it has the form
uy =C (@) e—# = C (¢) e—Per, '%'I;L=—“,&“o\ ()

We anticipate tha7 P‘ (==auJ69h?iﬂ)‘ is bounded when e€—0. Then it follows
] e
from (4) that for the first term of the asymptotic expansion

As a result of this it can be shown that the first approximation U inside Q is

equal to the solution of the Dirichlet's problem for (1) under condition uolr—O

outside Q uOEO. The next term u of the asymptotic expansions U= +eu .+ ...

0 "1

is obtained from the conditions that w.teu, is continuous on " and that u

2 {
0 "1 dp O

is continuous with an accuracy determined by quantltles of order ¢. To find

+eul)

u, we solve equation Loul—Lluo—O outside @ with the boundary condition du /atl

du /a | _o- From the established u, outside q we find u

1 1 inside Q as the

solution of equatlon (l) in Q with h=0 when ul/ Thus u.teu, is l

-0~ l/ =+0’ (O

continuous but has a discontinuity of order € in its derivative with respect
to p onT'. By continuing this process we can obtain an asymptotic approxi-
» mation of the n-th order (un—-uo4-ah-F 4—#%@) In this case U is contin-

uous on I', has a discontinuity in Bun/ap of order e when p=0 and satisfies (1)

1 n+l . n-1 .

with an accuracy determined by quantities of order e inQ, € outside Q.
The residual term of the asymptotic expansion is evaluated by using the method
in reference 3 (compare with reference 6).



Problem 2. As a second example, we consider an equation which coincides
with (1) inside Q and which has the form

- s
* a MR T

(A }1 - >0)\ (5)

The junction conditions on I' are as follows: U is continuous on I' and the
"fluxes" are equal

L.u, = Ay, — A%—Py, =0  outside ’Q

ou Y
— T \
om0 ° 3p Jomto’ \ (6)

.
op

By repeating the preceding steps we find that the following boundary conditions
are satisfied for the first approximation u, which, inside q, is the solution

of equation (1): 1) when o<B the condition of the first boundary value problem
is ‘Uglpm—o0= O\ 2) when =B the condition of the second boundary value problem

is Outy[0p fp—g = 0, 3) when =B the condition of the third boundary value
problem is 6ud6ph=.o4-Aqu;_5=ig} In the case of (1), Uy outside Q, is equal

to zero while in cases 2) and 3) it is a function of the boundary layer type.
The subsequent approximations are constructed as above.

These same methods are applicable in the case when the coefficients are
complex (as is the case in the theory of the propagation of electromagnetic
waves (ref. l)) and when the domain Q is not bounded. We also note that they
are also applicable in the case when A, for example, is a positively determined
differential operator with respect to 3/d¢.

3. Equations with rapidly varying coefficients. Let us assume that the
coefficients of the operator L, everywhere outside the narrow band near I', are
finite together with their derivatives and in the e- neighborhood of I' they have
large derivatives and can become large themselves. The following pertain to
this situation: problems for equations with discontinuous coefficients¥®, which
are considered as the limiting cases of problems with rapidly varying coeffi-
cients; problems in which the coefficients and the right sides become infinitely /249
large in the infinitely small neighborhood of T'; and various combined problems.

Problem 3. Let us assume that Q1 is a domain bounded by the curve Fl which

containé the liﬁe I'; L is an ope;;kor which is assigned in Ql’ with coefficients

which, generally speaking, are discontinuous on I' and smooth in qQ-I', where L
may be written, for example, in the "divergent" form

*It follows from the presentation made below that the formulation of boundary
conditions on I for such an equation depends on what limiting transition is
used to obtain this equation. Roughly speaking different problems differ f?om
each other by the presence of certain §-type functions or their derivatives in
the coefficients, which are concentrated on T'.
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Let us consider the f‘unctlons a.(p, 9), b. (p, cp), , which are smooth in Q, which
coincide with alp, fP). b(P. ?) \when Tepl=€, and the operator :

* A (N < . '-,;'\\ L
L= a2 (g,,q»)-u.)] +omhel (8)

In this case

ac (6, OF = @0 (0/6,9) + P (pfe, @) + ... +pan (ple, @) HprHaTHHEP PN

where the functions ozo( t,cp),ozl( t,cp) are selected in such a way that when t=#£1

(p=te) the functions oze(p,(p) and the n derivatives with respect to p coincide

with oz(ﬂ:,e,cp) and with its respective derivatives with respect to p. In par-
ticular g(—1,9)=a(—0,9), ay(+ 1,¢) =a(+0,¢). The other coefficients

be(p,cp), ... are determined in the same manner. For the sake of simplicity we

shall limit ourselves to the case when expresstons (7) and (8) contain only the
first terms, when the coeff1c1uolp=+o—— d on ¢ and when hEhQEO (the

general case is investigated in the same manner). Changing to the wvariable
t=p|e at the pole Iplse, we obtain

L.u = tﬂ {Lou + GLlu "‘3".*‘\}, where Lou = [ao(t) dt (bo (t) u T
»m F <L -".-

At the pole |p|<e equation (8) is replaced approx1mately by Lo O From this

we obtain the first approximation if we note that when |pl=euo must be joined to

the solution u of equation (7) which is bounded together with its derivatives
this means that duo/dtlt il—O(e)) We have

< bo(—ils (1) S bl Ty (4 1).,".1",;,1_-;2 :

%(—l)b’( 1)?ﬁc—-“l);"‘ao(+l)bo(+l):;.-. 1Y) (9)

where it is assumed that b£(+l)=bi( -1)=0. These considerations lead to the

following proposition that can be proved: the first term u, of the asymptotic

0
solution ue of equation (8), for some assigned condition on Fl is obtained in

the following manner: we solve equation (7) Lu=O under conditions on Fl and for
the junction conditions on I': b{¥ 0) u!+0)=-b(-—-0)u(—?)),’7ﬂ+ 0) b(+ 0)ir,Tomio '3 a0

gjﬁgéﬁmfand assume that u = outside the band lplse. The function U, satisfies



. conditions (9) at the points p=t¢ with an accuracy determined by €. In the
band lp|<e uoiﬁ determined as the solution of the ordinary equation LOuO=O,

. which is selected in such a way that Uy and i1ts derivative are continuous when

=-e¢. Then, as calculation steps show, we obtain a discontinuity of order € in
u. and u' when p=t€. The next approximation is constructed in the same general

0 Op
manner. After n steps we obtain an approximate solution which has closure
+ -
errors of the order ¢ l when lp|>e‘and of order " 1 when |p|<e and discontin-

uities in the function and its derivative of order €n+l when Ip|=e.

Problem 4. TLet us illustrate the construction of the asymptotic expansion
for an infinitely narrow barrier. Let us assume that everywhere in Q

1
Lu=Au—a(p,p)u=h - (10)
Let LeuELu when |p|26 and let
2 -
Llutr-=—('§p" + a (s) b (h:"o 9) ) Llut'+Lzuc =hu\ ( 11)

when Ip|<e where Ll and L2 are differential operators of the first order. Let

a(e):e'l. Then the first approximation u. of the function ue(hozh) is obtained

0]

when equation (10) is solved under conditions specified on Fl and under the

following junction conditions on I':

o . "
ug(+0,9) =uo(—0,9), Littplom—o= CLylloo=t0, C = €xp S b(t,9) d‘-\
Lo i . _1

. o |
If, on the other hand ofe)=0(1), L= 9/0p+ ..., hehas the form of the function

which approximates the 6-type function with respect to p or the §'-type function,
then in the first approximation to Uy we obtain a function Uq which has a
corresponding discontinuity in the normal derivative or in the function itself.
This corresponds to the known properties of classical potentials for simple and
double layers. The subsequent approximations are constructed in a similar
manner.

h. TLet us consider the general problem in which the change of variables
t=p|e produces a splitting of form (2) of operator L, in the band |p|< e: L.ty AgH

[Loths Ly, +...1; Ly,L, do not contain terms which have derivatives with respect
to .
p)
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We designate by vo(t), Wo(t) the basic system of solutions of the second-order
equation Lju=0, where vo(-l)=l,v6(-l)=0, wo(-l),wo(-l)=o, wg(—l)=l. Let us also

i i i = =y! =0, ) -
assume that v, is the solution of equation Lovy leo,vl(O) VO(O) 0. The junc

tion conditions for the first approximation Yo of the function Ug satisfying

equation L€u€:0 will have the form

Vo (1) o |—o = tholo, (8710} (1) + 0] (1)] oo + W), (1)t o = & |40 \

When VC')( 1)#0 we shall have ’-chMe qconzlitions: u; |;_‘, = uo|+or; O,-wok

' (1)‘:1; l_,,=u;{*:,‘4 when vé( 1)=0 we shall have the conditions: vvo(lr) Ugl—o = %'%o”iﬂ)‘fh‘*‘\
“%(l)";Lm==idahﬂjl Similar arguments can be extended to higher order partial
differential equations with any number of variables.

5. There is also an intermediate class of problems in which the width of
the band where the coefficients vary rapidly also approaches zero but does so
more slowly than in the cases considered above. 1In this case the width of the
band may be sufficlent to provide for the formation of boundary layer phenomenon
and associated discontinuities produced in the limit.

6. It is clear from the above how we must proceed with the solution of
the inverse problem: when we are required to use assigned boundary conditions
or conditions at the junction to construct equations in a wider region with
continuous coefficients, which are functions of €, in such a way that the solu-
tion of the initial problem plays the role of the first term in the asymptotic
solution of the equation with e. (For example, the basic boundary value problems
in Q for the elliptic equation (1) may be simulated as shown in problems 1, 2,
and furthermore by combining problems 1, 2 and 3 it is possible to obtain an
equation with continuous coefficients L u =h, which simulates these problems.)
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